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Abstract:  Treatment with activated MnQ; of 7-protected derivatives of 10-deacetylbaccatin IIl and
148-hydroxy-10-deacetylbaccatin 11l gave A-nor-B-homotaxoids resulting from a-ketol rearrangement
of 13, 14-dioxot intermediat

7-Trietylsilyl( TES)-10-deacetylbaccatin III (1a) is an important intermediate for the hemisynthesis of the
anticancer drug taxol,” and has been extensively used as a starting material for the synthesis of new antitumor
taxoids.® As part of a study aimed at the systematic modification of the various functional groups of 10-
deacetylbaccatin 111 (1b), we investigated the MnO, oxidation of 1a. The reaction gave a mixture of the 13-
dehydroderivative (1¢) and a less polar and further oxidized product, whose ratio depended on the reaction time
and the excess of oxidant.** A similar behaviour was observed with 1b. However, the structure of the more
oxidized products was completely different. 1b gave 1d, the result of the oxidation of both allylic hydroxyls,
whereas a more complex reaction took place with 1a. Indeed, the '"H NMR spectrum of the more oxidized
product from the reaction of 1a still displayed the signal of H-10 (5 5.85, d, Jio,on = 3.5 Hz), whereas the A B-
system of H-13 and H-14 had disappeared. Comparison with the *C NMR spectrum of the starting material
showed that two oxymethine carbons were missing, replaced by two carbonyl resonances (& 200.3 and 199.1).
These data were compatible with the a-diketone structure le. However, some spectroscopic features were
unusual for the structure le, and pointed instead to the alternative structure 2a.® The carbon bearing the tertiary
hydroxyl (C-1 in 1e, C-14 in 2a) resonated in fact at very low field ( & 98.2) for a mono-oxygenated quaternary
carbon, and the chemical shift of the enone f-carbon (C-11, & 173.2) was more typical of a cyclopentenone
rather than a cyclohexenone.” Furthermore, the small value of J;3 (1.0 Hz) and the downfield chemical shift of C-
15 (8 50.4) were unusual for baccatin III derivatives,’ whereas the long-wavelength absorption band of the ring
A enone (Amx 270 nm) was significantly different from the value reported in 14-oxotaxinine (Amex 284 nm),’ in
spite of a similar ring-A chromophore and the expected bathochromic shift (ca 7 nm) of the hydroxyl at C-1'°
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Ring A contraction and ring B expansion as in 2a could nicely rationalize this data, owing to the deshielding
effect of two a-carbonyls on the carbon bearing the tertiary hydroxyl (C-14), and to a major flexibility of ring B,
allowing deviation from the topology typical of baccatin Il derivatives. The rearranged structure 2a was further
confirmed by the detection (HMBC spectrum) of a long-range (°J) correlation between H-3 and the carbonyl
resonance at §. 200.3 (C-1)."

1a
1b

1¢ TES oM, BOH =0 H H

1d H =0 =0 H,H

1e TES oH,pOH =0 =0

4 TES «H,pOH oOH, BH  aH, BOH

1g TROC oH,pOTROC «OH,BH  H,H

1h  TROC oH,BOTROC oOH,BH «H, BOH

To confirm the unprecedented structure of 2a, this compound was reduced with NaBH, to the vicinal diol
2b."? The splitting pattern of H-2 in 2b (dd, J15=2.5 Hz, J,5=1.5 Hz) showed coupling with two protons, thus
locating the site of hydride attack to an adjacent carbon. Furthermore, a long-range (*J) corelation between H-1
and C-3 was observed in the HMBC spectrum. The a-stereochemistry of the C-1 hydroxyl and the cis-
relationship between H-1 and H-2 were evidenced by the detection of strong NOE-effects between H-1 and H-
16 (6%), H-2 and H-16 (15%), and H-1 and H-2 (7%).

The obtaining of 2a from 1a presumably involves the formation of the a-diketone le, which undergoes an
a-ketol rearrangement (A) opposite to that described by Paquette in his synthesis of taxane analogues via an
oxy-Cope approach.” The driving force for the a-keto! rearrangement might be the release of the angular strain
due to the presence of four adjacent sp’ carbons in the anti-Bredt olefin 1e, as well as the release of steric strain
around the heavily substituted cyclooctanone B-ring. We have been unable to obtain le from an independent
synthesis, and the role of MnO; in the rearrangement is thus unknown. 2a might be formed from the 13-dehydro
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derivative 1c via oxidation of the activated methylene, a type of reaction very rare, but not unprecedented,'* with
MnO,. '

Rearranged product 2a was also obtained (35 % yield) from the oxidation of the 7-TES derivative of 14p-
hydroxy-10-deacetylbaccatin III (1f),"* whereas the 7,10-di-TROC (2,2,2-trichloroethoxycarbonyl) derivatives of
10-deacetylbaccatin III and 14B-hydroxy-10-deacetylbaccatin II (compourids Ig and 1h respectively) gave the
rearranged product 2c¢ '*(vield 41% and 39 % respectively) along with the corresponding 13-dehydroderivatives.

Comparison of the reactivity of 1a and 1b toward MnO, shows that silylation of the C-7 hydroxyl prevents
the oxidation of the allylic C-10 hydroxyl, activating an unusual functionalization of the C-14 methylene.
Remarkable differences had already been observed in the methanolysis'’ and the Sml, deoxygenation' of the
corresponding C-10 acetates. Also in these cases, the reactivity of the C-10 oxygen function was shut down by
silylation of the C-7 hydroxyl. This intriguing effect highlights the subtleties of taxane chemistry, whose

rationalization provides unique challenges to natural product chemists.
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was then used for the bond joining the bridgehead carbon (C-14) to the adjacent carbon of ring-A (C-13).
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MnOQ; is known to oxidize a-ketols to a-diketones (Fatiadi, A.J.; Synthesis 1976, 65-104).

Oil, UV A (EtOH):275, 235 nm; IR v (liquid film): 3450, 1760, 1730, 1380, 1240, 980, 810, 700 cm)
'H NMR (400 MHz, CDCl,, TMS as reference): 5 7.96 (d, J = 7.6 Hz, Bz), 7.62 (t, J = 7.6 Hz, Bz), 7.49
(t, = 7.6 Hz, Bz), 6.81 (s, H-10), 5.82 (br s, H-2), 5.82 (dd, J=7.1,3.9 Hz, H-7), 5.18 (br d, J= 7.9 Hz,
H-5), 4.95 (d, = 11.8 Hz, TROC), 4.86 (d, J = 11.7 Hz, TROC), 4.85 (d, J = 8.5 Hz, H-20a), 4.79(d, J =
11.7 Hz, TROC), 4.77 (d, J = 8.5 Hz, H-20b), 4.60 (d, J = 11.8 Hz, TROC), 3.54 (br s, H-3), 2.90 (m, H-
6a), 2.39 (br s, H-18), 2.15 (m, H-6B), 1.96 (s, OAc), 1.58, 1.34, 1.26 (s, H-16, H-17 and H-19). °C
NMR (100 MHz, CDCls, TMS as reference): & 199.7, 199.0, 198.8 (s, C-9, C-13 and C-1), 170.3 (s,
OAc), 165.4 (s, C-11), 1652 (s, Bz), 153.8 (3, TROC), 153.0 (s, TROC), 143.4 (s, C-12), 134.1 (d, B2),
129.9 (d, Bz), 128.8 (d, Bz), 128.2 (s, Bz2), 98.7 (s, C-14), 93.9 (s, 2 x TROC), 82.7 (d, C-5), 80.4 (s, C-
4), 78.7, 76.5, 75.5 (d, C-2, C-7 and C-10), 77.5 (t, C-20), 77.2 (t, 2 x TROC), 60.2 (s, C-8), 50.6 (s, C-
15), 45.4 (d, C-3), 37.0 (q, C-17), 34.2 (t, C-6), 20.9 (g, OAc), 17.3 (q, C-16), 11.6 (g, C-18), 11.2 (g, C-
19).
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